Published in

Future Medicine, Nanomedicine, 6(11), p. 597-616, 2016

DOI: 10.2217/nnm.15.216

Links

Tools

Export citation

Search in Google Scholar

Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. Methods: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes, lipid nanoparticles, polymeric and iron oxide nanoparticles. Nanoparticle effects on primary human endothelial cell viability were monitored using real-time cell analysis and live-cell microscopy in static conditions, and in a flow model of arterial bifurcations. Results & conclusions: The majority of tested nanosystems were well tolerated by endothelial cells up to the concentration of 100 μg/ml in static, and up to 400 μg/ml in dynamic conditions. Pilot experiments in a pig model showed that intravenous administration of liposomal nanoparticles did not evoke the hypersensitivity reaction. These findings are of importance for future clinical use of nanosystems intended for intravascular applications.