Published in

Elsevier, Applied Soft Computing, (42), p. 229-245

DOI: 10.1016/j.asoc.2016.01.033

Links

Tools

Export citation

Search in Google Scholar

Evolutionary Multi-objective Blocking Lot-streaming Flow Shop Scheduling with Interval Processing Time

Journal article published in 2016 by Yuyan Han, Dunwei Gong, Yaochu Jin ORCID, Quan-Ke Pan
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A blocking lot-streaming flow shop scheduling problem with interval processing time has a wide range of applications in various industrial systems, however, not yet been well studied. In this paper, the problem is formulated as a multi-objective optimization problem, where each interval objective is converted into a real-valued one using a dynamically weighted sum of its midpoint and radius. A novel evolutionary multi-objective optimization algorithm is then proposed to solve the re-formulated multi-objective optimization problem, in which non-dominated solutions and differences among parents are taken advantage of when designing the crossover operator, and an ideal-point assisted local search strategy for multi-objective optimization is employed to improve the exploitation capability of the algorithm. To empirically evaluate the performance of the proposed algorithm, a series of comparative experiments are conducted on 24 scheduling instances. The experimental results show that the proposed algorithm outperforms the compared algorithms in convergence, and is more capable of tackling uncertainties.