Dissemin is shutting down on January 1st, 2025

Published in

Springer, Lecture Notes in Computer Science, p. 637-648, 2015

DOI: 10.1007/978-3-319-18032-8_50

Links

Tools

Export citation

Search in Google Scholar

Mining Association Rules in Graphs Based on Frequent Cohesive Itemsets

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Searching for patterns in graphs is an active field of data mining. In this context, most work has gone into discovering subgraph patterns, where the task is to find strictly defined frequently re-occurring structures, i.e., node labels always interconnected in the same way. Recently, efforts have been made to relax these strict demands, and to simply look for node labels that frequently occur near each other. In this setting, we propose to mine association rules between such node labels, thus discovering additional information about correlations and interactions between node labels. We present an algorithm that discovers rules that allow us to claim that if a set of labels is encountered in a graph, there is a high probability that some other set of labels can be found nearby. Experiments confirm that our algorithm efficiently finds valuable rules that existing methods fail to discover.