Published in

Elsevier, Nanomedicine: Nanotechnology, Biology and Medicine, 5(12), p. 1357-1364, 2016

DOI: 10.1016/j.nano.2016.02.005

Links

Tools

Export citation

Search in Google Scholar

Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver nanoparticles were distributed homogeneously throughout the fibers, and a fast release of chlorhexidine in 2days and a sustained release of silver ions for up to 28days. The antibacterial efficacy of the membranes against Staphylococcus aureus showed that the membranes exhibited an obvious inhibition zone upon loading with either chlorhexidine (20mug or more per membrane) or AgNO3 (1 and 5wt% to polymer). Furthermore, long-term antibacterial effect up to 4days was verified using membranes containing 5wt% AgNO3. The results suggest that the membranes have strong potential to act as an active antibacterial dressing for local delivery of antibacterial agents to prevent PDAIs.