Published in

SAGE Publications, Applied Spectroscopy, 6(70), p. 1034-1043, 2016

DOI: 10.1177/0003702816641271

Links

Tools

Export citation

Search in Google Scholar

Mid-Infrared Pumped Laser-Induced Thermal Grating Spectroscopy for Detection of Acetylene in the Visible Spectral Range

Journal article published in 2016 by Anna-Lena Sahlberg, Johannes Kiefer, Marcus Aldén, Zhongshan Li ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present mid-infrared laser-induced thermal grating spectroscopy (IR-LITGS) using excitation radiation around 3 µm generated by a simple broadband optical parametric oscillator (OPO). Acetylene as a typical small hydrocarbon molecule is used as an example target species. A mid-infrared broadband OPO pumped by the fundamental output of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to generate the pump beams, with pulse energies of 6–10 mJ depending on the wavelength. The line width of the OPO idler beam was ∼5 cm−1, which is large enough to cover up to six adjacent acetylene lines. The probe beam was the radiation of a 532 nm cw solid state laser with 190 mW output power. Signals were generated in atmospheric pressure gas flows of N2, air, CO2 and Ar with small admixtures of C2H2. A detection limit of less than 300 ppm was found for a point measurement of C2H2 diluted in N2. As expected, the oscillation frequency of the IR-LITGS signal was found to have a large dependency on the buffer gas, which allows determination of the speed of sound. Moreover, the results reveal a very strong collisional energy exchange between C2H2 and CO2 compared to the other gases. This manifests as significant local heating. In summary, the MIR-LITGS technique enables spectroscopy of fundamental vibrational transitions in the infrared via detection in the visible spectral range.