Published in

Oxford University Press, Human Molecular Genetics, 17(19), p. 3343-3353, 2010

DOI: 10.1093/hmg/ddq246

Links

Tools

Export citation

Search in Google Scholar

Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many epidemiologic studies have associated human mitochondrial haplogroups to rare mitochondrial diseases like Leber's hereditary optic neuropathy or to more common age-linked disorders such as Parkinson's disease. However, cellular, biochemical and molecular-genetic evidence that is able to explain these associations is very scarce. The etiology of multifactorial diseases is very difficult to sort out because such diseases are due to a combination of genetic and environmental factors that individually only contribute in small part to the development of the illness. Thus, the haplogroup-defining mutations might behave as susceptibility factors, but they could have only a small effect on oxidative phosphorylation (OXPHOS) function. Moreover, these effects would be highly dependent on the 'context' in which the genetic variant is acting. To homogenize this 'context' for mitochondrial DNA (mtDNA) mutations, a cellular approach is available that involves the use of what is known as 'cybrids'. By using this model, we demonstrate that mtDNA and mtRNA levels, mitochondrial protein synthesis, cytochrome oxidase activity and amount, normalized oxygen consumption, mitochondrial inner membrane potential and growth capacity are different in cybrids from the haplogroup H when compared with those of the haplogroup Uk. Thus, these inherited basal differences in OXPHOS capacity can help to explain why some individuals more quickly reach the bioenergetic threshold below which tissue symptoms appear and progress toward multifactorial disorders. Hence, some population genetic variants in mtDNA contribute to the genetic component of complex disorders. The existence of mtDNA-based OXPHOS differences opens possibilities for the existence of a new field, mitochondrial pharmacogenomics. New sequence accession nos: HM103354-HM103363.