Published in

IOP Publishing, Japanese Journal of Applied Physics, 4S(55), p. 04EG05, 2016

DOI: 10.7567/jjap.55.04eg05

Links

Tools

Export citation

Search in Google Scholar

Two-dimensional characterization of ion-implantation damage in GaN Schottky contacts using scanning internal photoemission microscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Nitrogen-ion-implantation damage on GaN has been clearly visualized using scanning internal photoemission microscopy. Ni Schottky contacts were formed on selectively N-ion-implanted n-GaN surfaces at 80 keV with an ion dose of 1 × 1014 or 1 × 1015 cm−2, and a photocurrent was detected by focusing and scanning a laser beam over the contacts. We found that the photocurrent decreased in the implanted regions due to an increase in the Schottky barrier and carrier depletion. Photocurrent maps showed that the induced damage did not spread from the implanted regions within the spatial resolution of the equipment. We confirmed that this method is a powerful tool for mapping implanted highly resistive regions.