Published in

IOS Press, Journal of Parkinson's Disease, 3(3), p. 351-362, 2013

DOI: 10.3233/jpd-130198

Links

Tools

Export citation

Search in Google Scholar

Continuous Real-Time in vivo Measurement of Cerebral Nitric Oxide Supports Theoretical Predictions of an Irreversible Switching in Cerebral ROS after Sufficient Exposure to External Toxins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Mathematical models of the interactions between alphasynuclein (αS) and reactive oxygen species (ROS) predict a systematic and irreversible switching to damagingly high levels of ROS after sufficient exposure to risk factors associated with Parkinson's disease (PD). Objectives: We tested this prediction by continuously monitoring real-time changes in neurochemical levels over periods of several days in animals exposed to a toxin known to cause Parkinsonian symptoms. Methods: Nitric oxide (NO) sensors were implanted in the brains of freely moving rats and the NO levels continuously recorded while the animals were exposed to paraquat (PQ) injections of various amounts and frequencies. Results: Long-term, real-time measurement of NO in a cohort of animals showed systematic switching in levels when PQ injections of sufficient size and frequency were administered. The experimental observations of changes in NO imply a corresponding switching in endogenous ROS levels and support theoretical predictions of an irreversible change to damagingly high levels of endogenous when PD risks are sufficiently large. Conclusions: Our current results only consider one form of PD risk, however, we are sufficiently confident in them to conclude that: (i) continuous long term measurement of neurochemical dynamics provide a novel way to measure the temporal change and system dynamics which determine Parkinsonian damage, and (ii) the bistable feedback switching predicted by mathematical modelling seems to exist and that a deeper analysis of its characteristics would provide a way of understanding the pathogenic mechanisms that initiate Parkinsonian cell damage.