Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Molecular Phylogenetics and Evolution, (100), p. 135-147, 2016

DOI: 10.1016/j.ympev.2016.03.031

Links

Tools

Export citation

Search in Google Scholar

The Evolutionary Origin of CIPK16: A Gene Involved in Enhanced Salt Tolerance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Calcineurin B-like protein interacting protein kinases (CIPKs) are key regulators of pre-transcriptional and post-translational responses to abiotic stress. Arabidopsis thaliana CIPK16 (AtCIPK16) was identified from a forward genetic screen as a gene that mediates lower shoot salt accumulation and improved salinity tolerance in Arabidopsis and transgenic barley. Here, we aimed to gain an understanding of the evolution of AtCIPK16, and orthologues of CIPK16 in other plant species including barley, by conducting a phylogenetic analysis of terrestrial plant species. The resulting protein sequence based phylogenetic trees revealed a single clade that included AtCIPK16 along with two segmentally duplicated CIPKs, AtCIPK5 and AtCIPK25. No monocots had proteins that fell into this clade; instead the most closely related monocot proteins formed a group basal to the entire CIPK16, 5 and 25 clade. We also found that AtCIPK16 contains a core Brassicales specific indel and a putative nuclear localisation signal, which are synapomorphic characters of CIPK16 genes. In addition, we present a model that proposes the evolution of CIPK16, 5 and 25 clade.