Published in

American Chemical Society, Journal of Physical Chemistry C, 23(118), p. 12260-12265, 2014

DOI: 10.1021/jp501584f

Links

Tools

Export citation

Search in Google Scholar

Ensemble Effect Evidenced by CO Adsorption on the 3-Fold PdGa Surfaces

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The atomic structure and composition of a catalyst’s surface have a major influence on its performance regarding activity and selectivity. In this respect, intermetallic compounds are promising future catalyst materials, as their surfaces exhibit small and well-defined ensembles of active metal atoms. In this study, the active adsorption sites of the 3-fold-symmetric surfaces of the PdGa intermetallic compound were investigated in a combined experimental and computational approach using CO as a test molecule. The PdGa(111) and (−1–1–1) surfaces exhibit very similar electronic structures, but have Pd sites with very different, well-defined atomic coordination and separation. They thereby serve as prototypical model systems for studying ensemble effects on bimetallic catalytic surfaces. Scanning tunneling microscopy and Fourier transform infrared spectroscopy show that the CO adsorption on both surfaces is solely associated with the topmost Pd atoms and Ga acts only as an inactive spacer. The different local configurations of these Pd atoms dictate the CO adsorption sites as a function of coverage. The experimental results are corroborated by density functional theory and illustrate the site separation and ensemble effects for molecular adsorption on intermetallic single crystalline surfaces.