Published in

American Chemical Society, Inorganic Chemistry, 6(55), p. 3128-3135, 2016

DOI: 10.1021/acs.inorgchem.6b00059

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Structure, and Complex Magnetism of MIr2In8 (M = Eu, Sr)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the synthesis, crystal structure, and physical properties of two new polar intermetallic compounds, EuIr2In8 and SrIr2In8. Both were synthesized in good yield using In metal as a reactive flux medium, enabling the growth of large crystals for physical property measurements. They crystallize in the orthorhombic space group Pbam with the CeFe2Al8 structure type, which is sometimes also referred to as the CaCo2Al8 structure type. The two analogues have unit cell parameters of a = 13.847(3) Å, b = 16.118(3) Å, and c = 4.3885(9) Å for M = Eu and a = 13.847(3) Å, b = 16.113(3) Å, and c = 4.3962(9) Å for M = Sr at room temperature. SrIr2In8 is a diamagnetic metal with no local magnetic moments on either the Sr or Ir sites, and the diamagnetic contribution from core electrons overwhelms the expected Pauli paramagnetism normally seen in intermetallic compounds. Magnetism in EuIr2In8 is dominated by the local Eu moments, which order antiferromagnetically at 5 K in low applied fields. Increasing the field strength depresses the magnetic ordering temperature and also induces a spin reorientation at lower temperature, indicating complex competing magnetic interactions. Low-temperature heat capacity measurements show a significant enhancement of the Sommerfeld coefficient in EuIr2In8 relative to that in SrIr2In8, with estimated values of γ = 118(3) and 18.0(2) mJ mol(-1) K(-2), respectively.