Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms10935

Links

Tools

Export citation

Search in Google Scholar

Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator

Journal article published in 2016 by Yonggang Ke, Travis Meyer ORCID, William M. Shih, Gaetan Bellot
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. Here we have designed and constructed a rhombus-shaped DNA origami ‘nanoactuator’ that uses mechanical linkages to copy distance changes induced on one half (‘the driver’) to be propagated to the other half (‘the mirror’). By combining this nanoactuator with split enhanced green fluorescent protein (eGFP), we have constructed a DNA–protein hybrid nanostructure that demonstrates tunable fluorescent behaviours via long-range allosteric regulation. In addition, the nanoactuator can be used as a sensor that responds to specific stimuli, including changes in buffer composition and the presence of restriction enzymes or specific nucleic acids.