Published in

Springer Nature [academic journals on nature.com], Oncogene, 25(24), p. 4017-4025, 2005

DOI: 10.1038/sj.onc.1208576

Links

Tools

Export citation

Search in Google Scholar

Krüppel-like factor 4 prevents centrosome amplification following γ-irradiation-induced DNA damage

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Centrosome duplication is a carefully controlled process in the cell cycle. Previous studies indicate that the tumor suppressor, p53, regulates centrosome duplication. Here, we present evidence for the involvement of the mammalian Krüppel-like transcription factor, KLF4, in preventing centrosome amplification following DNA damage caused by gamma-irradiation. The colon cancer cell line HCT116, which contains wild-type p53 alleles (HCT116 p53+/+), displayed stable centrosome numbers following gamma-irradiation. In contrast, HCT116 cells null for the p53 alleles (HCT116 p53-/-) exhibited centrosome amplification after irradiation. In the latter cell line, KLF4 was not activated following gamma-irradiation due to the absence of p53. However, centrosome amplification could be suppressed in irradiated HCT116 p53-/- cells by conditional induction of exogenous KLF4. Conversely, in a HCT116 p53+/+ cell line stably transfected with small hairpin RNA (shRNA) designed to specifically inhibit KLF4, gamma-irradiation induced centrosome amplification. In these cells, the inability of KLF4 to become activated in response to DNA damage was directly associated with an increase in cyclin E level and Cdk2 activity, both essential for regulating centrosome duplication. Cotransfection experiments showed that KLF4 overexpression suppressed the promoter activity of the cyclin E gene. The results of this study demonstrated that KLF4 is both necessary and sufficient in preventing centrosome amplification following gamma-radiation-induced DNA damage and does so by transcriptionally suppressing cyclin E expression.