Published in

American Chemical Society, Biochemistry, 21(45), p. 6628-6634, 2006

DOI: 10.1021/bi060108c

Links

Tools

Export citation

Search in Google Scholar

α-Amino-β-carboxymuconic-ε-semialdehyde Decarboxylase (ACMSD) Is a New Member of the Amidohydrolase Superfamily †

Journal article published in 2006 by Tingfeng Li, Hiroaki Iwaki, Rong Fu, Yoshie Hasegawa, Hong Zhang, Aimin Liu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The enzymatic activity of Pseudomonas fluorescens alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD) is critically dependent on a transition metal ion [Li, T., Walker, A. L., Iwaki, H., Hasegawa, Y., and Liu, A. (2005) J. Am. Chem. Soc. 127, 12282-12290]. Sequence analysis in this study further suggests that ACMSD belongs to the amidohydrolase superfamily, whose structurally characterized members comprise a catalytically essential metal cofactor. To identify ACMSD's metal ligands and assess their functions in catalysis, a site-directed mutagenesis analysis was conducted. Alteration of His-9, His-177, and Asp-294 resulted in a dramatic loss of enzyme activity, substantial reduction of the metal-binding ability, and an altered metallocenter electronic structure. Thus, these residues are confirmed to be the endogenous metal ligands. His-11 is implicated in metal binding because of the strictly conserved HxH motif with His-9. Mutations at the 228 site yielded nearly inactive enzyme variants H228A and H228E. The two His-228 mutant proteins, however, exhibited full metal-binding ability and a metal center similar to that of the wild-type enzyme as shown by EPR spectroscopy. Kinetic analysis on the mutants indicates that His-228 is a critical catalytic residue along with the metal cofactor. Since the identified metal ligands and His-228 are present in all known ACMSD sequences, it is likely that ACMSD proteins from other organisms contain the same cofactor and share similar catalytic mechanisms. ACMSD is therefore the first characterized member in the amidohydrolase superfamily that represents a C-C breaking activity.