Published in

Wiley, Chemistry - A European Journal, 19(18), p. 6055-6062, 2012

DOI: 10.1002/chem.201103719

Links

Tools

Export citation

Search in Google Scholar

PEPPSI-Type Palladium Complexes Containing Basic 1,2,3-Triazolylidene Ligands and Their Role in Suzuki-Miyaura Catalysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of PEPPSI-type palladium(II) complexes was synthesized that contain 3-chloropyridine as an easily removable ligand and a triazolylidene as a strongly donating mesoionic spectator ligand. Catalytic tests in Suzuki-Miyaura cross-coupling reactions revealed the activity of these complexes towards aryl bromides and aryl chlorides at moderate temperatures (50 °C). However, the impact of steric shielding was the inverse of that observed with related normal Nheterocyclic carbenes (imidazol-2-ylidenes) and sterically congested mesityl substituents induced lower activity than small alkyl groups. Mechanistic investigations, including mercury poisoning experiments, TEM analyses, and ESI mass spectrometry, provide evidence for ligand dissociation and the formation of nanoparticles as a catalyst resting state. These heterogeneous particles provide a reservoir for soluble palladium atoms or clusters as operationally homogeneous catalysts for the arylation of aryl halides. Clearly, the substitution of a normal N-heterocyclic carbene for a more basic triazolylidene ligand in the precatalyst has a profound impact on the mode of action of the catalytic system.