Published in

American Chemical Society, Inorganic Chemistry, 17(49), p. 8092-8098, 2010

DOI: 10.1021/ic1011633

Links

Tools

Export citation

Search in Google Scholar

Novel Three-Dimensional Metal-Azide Network Induced by a Bipyridine-Based Zwitterionic Monocarboxylate Ligand: Structures and Magnetism

Journal article published in 2010 by Yu Ma, Yu, Xiu-Bing Li, Xiu-Chun Yi, Qin-Xiang Jia, En-Qing Gao, Cai-Ming Liu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The 4,4'-bipyridine-based zwitterionic monocarboxylate ligand, 4,4'-dipyridinio-1-acetate (L), is used as coligand to construct novel magnetic coordination polymers with mixed azide and carboxylate bridges. Two compounds, [Co(2)(L)(2)(N(3))(4)(H(2)O)] x 4 H(2)O (1) and [Mn(6)(L)(4)(N(3))(12)(H(2)O)] x 5 H(2)O (2), have been structurally and magnetically characterized. Compound 1 consists of one-dimensional (1D) coordination chains in which the unprecedented binuclear motifs with mixed (mu-EO-N(3))(mu-COO)(2) (EO = end-on) triple bridges are cross-linked by the 4,4'-dipyridinium-N-methylene spacers. In compound 2, the azide anions link the metal ions into a very complicated three-dimensional (3D) network with unprecedented topology, and the zwitterionic coligand is embedded in and serves as additional supports for the 3D network. Magnetic studies reveal that the mixed (mu-EO-N(3))(mu-COO)(2) triple bridges transmit ferromagnetic coupling in the Co(II) compound, and the overall antiferromagnetic interactions exist in the Mn(II) compound.