American Association of Immunologists, The Journal of Immunology, 12(195), p. 5637-5647, 2015
Full text: Download
Abstract Tumor-associated myeloid cells, including dendritic cells (DCs) and macrophages, are immune suppressive. This study demonstrates a novel mechanism involving FOXO3 and NF-κB RelA that controls myeloid cell signaling and impacts their immune-suppressive nature. We find that FOXO3 binds NF-κB RelA in the cytosol, impacting both proteins by preventing FOXO3 degradation and preventing NF-κB RelA nuclear translocation. The location of protein–protein interaction was determined to be near the FOXO3 transactivation domain. In turn, NF-κB RelA activation was restored upon deletion of the same sequence in FOXO3 containing the DNA binding domain. We have identified for the first time, to our knowledge, a direct protein–protein interaction between FOXO3 and NF-κB RelA in tumor-associated DCs. These detailed biochemical interactions provide the foundation for future studies to use the FOXO3–NF-κB RelA interaction as a target to enhance tumor-associated DC function to support or enhance antitumor immunity.