Published in

Wiley, Photochemistry and Photobiology, p. n/a-n/a

DOI: 10.1111/php.12586

Links

Tools

Export citation

Search in Google Scholar

An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO3Nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Strontium titanate nanoparticles have attracted much attention due to their physical and chemical properties, especially as photocatalysts under ultraviolet irradiation. In this paper, we analyze the effect of heating rate during the crystallization process of SrTiO3 nanoparticles in the degradation of organic pollutants. The relationship between structural, morphological and photocatalytic properties of the SrTiO3 nanoparticles was investigated by using different techniques. Transmission electron microscopy and N2 adsorption results show that particle size and surface properties are tuned by the heating rate of the SrTiO3 crystallization process. The SrTiO3 nanoparticles showed good photoactivity for the degradation of methylene blue, rhodamine B and methyl orange dyes, driven by a non-selective process. The SrTiO3 sample with the largest particle size exhibited higher photoactivity per unit area, independent of the molecule to be degraded. The results pointed out that the photodegradation of MB dye catalyzed by SrTiO3 is caused by the action of VB holes (direct pathway), and the indirect mechanism has a negligible effect, i.e., degradation by O2 (-•) and (•) OH radicals attack. This article is protected by copyright. All rights reserved.