De Gruyter Open, Open Life Sciences, 2(3), p. 105-112, 2008
DOI: 10.2478/s11535-008-0011-z
Full text: Download
Abstract Neurotrophic factors have been widely suggested as a treatment for multiple diseases including motorneuron pathologies, like Amyotrophic Lateral Sclerosis. However, clinical trials in which growth factors have been systematically administered to Amyotrophic Lateral Sclerosis patients have not been effective, owing in part to the short half-life of these factors and their low concentrations at target sites. A possible strategy is the use of the atoxic C fragment of the tetanus toxin as a neurotrophic factor carrier to the motorneurons. The activity of trophic factors should be tested because their genetic fusion to proteins could alter their folding and conformation, thus undermining their neuroprotective properties. For this purpose, in this paper we explored the Brain Derived Neurotrophic Factor (BDNF) activity maintenance after genetic fusion with the C fragment of the tetanus toxin. We demonstrated that BDNF fused with the C fragment of the tetanus toxin induces the neuronal survival Akt kinase pathway in mouse cortical culture neurons and maintains its antiapoptotic neuronal activity in Neuro2A cells.