Published in

American Chemical Society, ACS Biomaterials Science and Engineering, 4(2), p. 526-534, 2016

DOI: 10.1021/acsbiomaterials.5b00500

Links

Tools

Export citation

Search in Google Scholar

Low-cost and effective fabrication of biocompatible nanofibers from silk and cellulose-rich materials

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Here, we show the production of nanofibrous mats with controlled mechanical properties and excellent biocompatibility by combining fibroin with pure cellulose and cellulose-rich parsley powder agro-waste. To this end, trifluoroacetic acid was used as common solvent for all the involved biomaterials, achieving highly homogeneous blends that were suitable for the electrospinning technique. Morphological analysis revealed that the electrospun composite nanofibers were well-defined and defect-free, with a diameter in the range of 65-100 nm. Mechanical investigations demonstrated that the fibrous mats exhibited an increased stiffness when pure fibroin was combined with cellulose, whereas they possessed an increased flexibility when the parsley waste was added to fibroin. Lastly, the produced mats were highly biocompatible, as demonstrated by the promoted proliferation of fibroblast cells. The characteristics of the hybrid fibroin-cellulose nanofibers, in terms of nanoscale topography, mechanical properties and biocompatibility, are attractive and potentially applicable in the biomedical sector.