Published in

Springer Verlag, Plant and Soil, 1-2(379), p. 149-160

DOI: 10.1007/s11104-014-2046-4

Links

Tools

Export citation

Search in Google Scholar

Endogeic earthworms modify soil phosphorus, plant growth and interactions in a legume–cereal intercrop

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and aims Intercropping of legumes and cereals appears as an alternative agricultural practice to decrease the use of chemical fertilizers while maintaining high yields. A better understanding of the biotic and abiotic factors determining interactions between plants in such associations is required. Our study aimed to analyse the effect of earthworms on the legume–cereal interactions with a focus on the modifications induced by earthworms on the forms of soil phosphorus (P). Methods In a glasshouse experiment we investigated the effect of an endogeic earthworm (Allolobophora chlorotica) on the plant biomass and on N and P acquisition by durum wheat (Triticum turgidum durum L.) and chickpea (Cicer arietinum L.) either grown alone or intercropped. The modifications of the different organic and inorganic P forms in the bulk soil were measured. Results There was no overyielding of the intercrop in the absence of earthworms. Earthworms had a strong influence on biomass and resource allocation between roots and shoots whereas no modification was observed in terms of total biomass production and P acquisition. Earthworms changed the interaction between the intercropped species mainly by reducing the competition for nutrients. Facilitation (positive plant–plant interactions) was only observed for the root biomass and P acquisition in the presence of earthworms. Earthworms decreased the amount of organic P extracted with NaOH (Po NaOH), while they increased the water soluble inorganic P (Pi H2O) content. Conclusions In this experiment, earthworms could be seen as “troubleshooter” in plant–plant interaction as they reduced the competition between the intercropped species. Our study brings new insights into how earthworms affect plant growth and the P cycle.