Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Lecture Notes in Computer Science, p. 591-598

DOI: 10.1007/978-3-642-40763-5_73

Links

Tools

Export citation

Search in Google Scholar

Enhancing the Reproducibility of Group Analysis with Randomized Brain Parcellations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neuroimaging group analyses are used to compare the inter-subject variability observed in brain organization with behavioural or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity of current voxel-based analysis schemes may however lead to non-reproducible results. A new approach is introduced to overcome the limitations of standard methods, in which active voxels are detected according to a consensus on several random parcellations of the brain images, while a permutation test controls the false positive risk. Both on syntetic and real data, this approach shows higher sensitivity, better recovery and higher reproducibility than standard methods and succeeds in detecting a significant association in an imaging-genetic study between a genetic variant next to the COMT gene and a region in the left thalamus on a functional Magnetic Resonance Imaging contrast.