Published in

Public Library of Science, PLoS ONE, 1(7), p. e29396, 2012

DOI: 10.1371/journal.pone.0029396

Links

Tools

Export citation

Search in Google Scholar

Large-Scale Pathway-Based Analysis of Bladder Cancer Genome-Wide Association Data from Five Studies of European Background

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pathway analysis of genome-wide association studies (GWAS) offer a unique opportunity to collectively evaluate genetic variants with effects that are too small to be detected individually. We applied a pathway analysis to a bladder cancer GWAS containing data from 3,532 cases and 5,120 controls of European background (n = 5 studies). Thirteen hundred and ninety-nine pathways were drawn from five publicly available resources (Biocarta, Kegg, NCI-PID, HumanCyc, and Reactome), and we constructed 22 additional candidate pathways previously hypothesized to be related to bladder cancer. In total, 1421 pathways, 5647 genes and ~90,000 SNPs were included in our study. Logistic regression model adjusting for age, sex, study, DNA source, and smoking status was used to assess the marginal trend effect of SNPs on bladder cancer risk. Two complementary pathway-based methods (gene-set enrichment analysis [GSEA], and adapted rank-truncated product [ARTP]) were used to assess the enrichment of association signals within each pathway. Eighteen pathways were detected by either GSEA or ARTP at P≤0.01. To minimize false positives, we used the I 2 statistic to identify SNPs displaying heterogeneous effects across the five studies. After removing these SNPs, seven pathways ('Aromatic amine metabolism' [P GSEA = 0.0100, P ARTP = 0.0020], 'NAD biosynthesis' [P GSEA = 0.0018, P ARTP = 0.0086], 'NAD salvage' [P ARTP = 0.0068], 'Clathrin derived vesicle budding' [P ARTP = 0.0018], 'Lysosome vesicle biogenesis' [P GSEA = 0.0023, P ARTP<0.00012], 'Retrograde neurotrophin signaling' [P GSEA = 0.00840], and 'Mitotic metaphase/anaphase transition' [P GSEA = 0.0040]) remained. These pathways seem to belong to three fundamental cellular processes (metabolic detoxification, mitosis, and clathrin-mediated vesicles). Identification of the aromatic amine metabolism pathway provides support for the ability of this approach to identify pathways with established relevance to bladder carcinogenesis.