Published in

American Chemical Society, The Journal of Physical Chemistry A, 33(117), p. 8026-8034, 2013

DOI: 10.1021/jp4051403

Links

Tools

Export citation

Search in Google Scholar

Comparison between alkalimetal and group 11 transition metal halide and hydride tetramers: Molecular structure and bonding

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A comparison between alkalimetal (M = Li, Na, K, and Rb) and group 11 transition metal (M = Cu, Ag, and Au) (MX)inf4/inf tetramers with X = H, F, Cl, Br, and I has been carried out by means of the Amsterdam Density Functional software using density functional theory at the BP86/QZ4P level of theory and including relativistic effects through the ZORA approximation. We have obtained that, in the case of alkalimetals, the cubic isomer of Tinfd/inf geometry is more stable than the ring structure with Dinf4h/inf symmetry, whereas in the case of group 11 transition metal tetramers, the isomer with Dinf4h/inf symmetry (or Dinf2d/inf symmetry) is more stable than the Tinfd/inf form. To better understand the results obtained we have made energy decomposition analyses of the tetramerization energies. The results show that in alkalimetal halide and hydride tetramers, the cubic geometry is the most stable because the larger Pauli repulsion energies are compensated by the attractive electrostatic and orbital interaction terms. In the case of group 11 transition metal tetramers, the Dinf4h/inf/Dinf2d/inf geometry is more stable than the Tinfd/inf one due to the reduction of electrostatic stabilization and the dominant effect of the Pauli repulsion ; We are grateful to the following organizations for financial support: the Ministerio de Ciencia e Innovacion (MICINN, project numbers CTQ2011-23156/BQU and CTQ2011-25086/BQU), the Generalitat de Catalunya (projects number 2009SGR528, 2009SGR637, and Xarxa de Referencia en Quimica Teorica i Computacional), and the FEDER fund (European Fund for Regional Development) for the grant UNGI08-4E-003. Excellent service by the Centre de Serveis Cientifics i Academics de Catalunya (CESCA) is gratefully acknowledged