Published in

American Chemical Society, Organometallics, 20(25), p. 4799-4807, 2006

DOI: 10.1021/om0605581

Links

Tools

Export citation

Search in Google Scholar

Facile Transformations of a 1,3,5-Triphosphacyclohexadienyl Anion Within the Coordination Sphere of Group 13 and 14 Elements : Synthesis of 1,3-Diphosphacyclopentadienyl Complexes and Phosphaorganometallic Cage Compounds

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reactivity of the lithium triphosphacyclohexadienyl complex Li[1,3,5-MeP3C3But3] toward a range of group 13 and 14 halide complexes has been investigated. The heterocycle reacts with MX (M = Ga, In, or Tl; X = Cl or I) to give the diphosphacyclopentadienyl (i.e., diphospholyl) complexes [M(?5-1,3-P2C3But3)] in good yield via phosphinidene, PMe, elimination reactions. One complex, M = Tl, has been structurally characterized and found to exist as a one-dimensional polymer in the solid state. Similarly, the reactions of Li[MeP3C3But3] with MCl2 (M = Sn or Pb) have given the tetraphosphametallocenes [M(?5-1,3-P2C3But3)2], which have been structurally characterized. These exhibit fluxional behavior in solution, which has been examined by variable-temperature NMR studies. The monomeric guanidinato?tin chloride complexes [LSnCl] (L = Cy2NC(NAr)2- or (cis-2,6-Me2C5H8N)C(NAr)2-, Cy = cyclohexyl, Ar = C6H3Pri2-2,6) have been prepared, structurally characterized, and treated with Li[MeP3C3But3]. Again, this has yielded diphospholyl complexes [LSn(?1-1,3-P2C3But3)] via phosphinidene elimination processes. In contrast, the reactions of Ph3ECl, E = Sn or Pb, do not proceed via phosphinidene elimination reactions, but instead by triphosphacyclohexadienyl rearrangement processes that eventually lead to complexes [Ph3M(?2-P,P-MeP3C3But3)], containing five-coordinate metal centers that are P,P-chelated by an anionic bicyclic ligand. In the case of the tin complex, a reaction intermediate has been isolated and shown to contain the first structurally characterized example of a 1,2-diphosphabicyclo[1.1.0]butane fragment. A mechanism for the formation of this intermediate has been proposed. ; doi: 10.1021/om0605581