Published in

Elsevier, Biophysical Journal, 1(101), p. 176-187, 2011

DOI: 10.1016/j.bpj.2011.05.050

Links

Tools

Export citation

Search in Google Scholar

Salt Contribution to RNA Tertiary Structure Folding Stability

Journal article published in 2011 by Zhi-Jie Tan, Shi-Jie Chen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Accurate quantification of the ionic contribution to RNA folding stability could greatly enhance our ability to understand and predict RNA functions. Recently, motivated by the potential importance of ion correlation and fluctuation in RNA folding, we developed the tightly bound ion (TBI) model. Extensive experimental tests showed that the TBI model can lead to better treatment of multivalent ions than the Poisson-Boltzmann equation. In this study, we use the model to quantify the contribution of salt (Na(+) and Mg(2+)) to the RNA tertiary structure folding free energy. Folding of the RNA tertiary structure often involves intermediates. We focus on the folding transition from an intermediate state to the native state, and compute the electrostatic folding free energy of the RNA. Based on systematic calculations for a variety of RNA molecules, we derive a set of formulas for the electrostatic free energy for tertiary structural folding as a function of the sequence length and compactness of the RNA and the Na(+) and Mg(2+) concentrations. Extensive comparisons with experimental data suggest that our model and the extracted empirical formulas are quite reliable.