Published in

American Association for the Advancement of Science, Science, 6227(347), 2015

DOI: 10.1126/science.aaa4339

Links

Tools

Export citation

Search in Google Scholar

Modeling infectious disease dynamics in the complex landscape of global health

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational and spatial scales, which even within a single pathogen often span hours to months, cellular to ecosystem levels, and local to pandemic spread. Some pathogens are directly transmitted between individuals of a single species, while others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity, and dynamic human behavior, raise prevention and control from formerly national to international issues. In the face of this complexity, mathematical models offer essential tools for synthesizing information to understand epidemiological patterns, and for developing the quantitative evidence base for decision-making in global health.