Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms10843

Links

Tools

Export citation

Search in Google Scholar

Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers

Journal article published in 2016 by Wenbin Li, Ju Li ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMonolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T′ phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T′ structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.