Published in

Wiley, Advanced Functional Materials, 23(26), p. 4213-4222, 2016

DOI: 10.1002/adfm.201600405

Links

Tools

Export citation

Search in Google Scholar

Inhibition of Ion Migration for Reliable Operation of Organolead Halide Perovskite-Based Metal/Semiconductor/Metal Broadband Photodetectors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Organolead halide perovskites (OHPs) have attracted extensive attention as light harvesting materials for solar cells recently, because of their high charge carrier mobility, high photoconversion efficiencies, low cost, and simple methodology. Despite these advantages, the OHPs exhibit sweep-dependent hysteresis behavior in current–voltage characteristics films, deteriorating the reliability of devices based on the OHPs. This study demonstrates reliable high on/off ratio (Ion/Ioff = 104) CH3NH3PbI3 broadband photodetectors with buffer layer-free simple metal/semiconductor/metal lateral structure. At high external bias, poor on/off ratios and spikes in dark current and photocurrent are observed due to the migration of charged defect ions. The ion migration can be effectively inhibited at low external bias, and thus the devices show high Ion/Ioff ratios and spike-free dark current and photocurrent. In addition, prevention of the prepoling in the CH3NH3PbI3 films by operating at the low external bias results in pronouncedly enhanced signal-to-noise ratios even under low intensity incident light. These results strongly propose that inhibiting the migration of charged defect ions in CH3NH3PbI3 films is a key in developing reliable high performance CH3NH3PbI3-based devices.