Published in

Genetics Society of America, G3, 5(6), p. 1239-1249, 2016

DOI: 10.1534/g3.115.026468

Links

Tools

Export citation

Search in Google Scholar

Comparative Transcriptomics Indicates a Role for SHORT VEGETATIVE PHASE (SVP) Genes in Mimulus guttatus Vernalization Response

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract The timing of reproduction in response to variable environmental conditions is critical to plant fitness, and is a major driver of taxon differentiation. In the yellow monkey flower, Mimulus guttatus, geographically distinct North American populations vary in their photoperiod and chilling (vernalization) requirements for flowering, suggesting strong local adaptation to their surroundings. Previous analyses revealed quantitative trait loci (QTL) underlying short-day mediated vernalization responsiveness using two annual M. guttatus populations that differed in their vernalization response. To narrow down candidate genes responsible for this variation, and to reveal potential downstream genes, we conducted comparative transcriptomics and quantitative PCR (qPCR) in shoot apices of parental vernalization responsive IM62, and unresponsive LMC24 inbred lines grown under different photoperiods and temperatures. Our study identified several metabolic, hormone signaling, photosynthetic, stress response, and flowering time genes that are differentially expressed between treatments, suggesting a role for their protein products in short-day-mediated vernalization responsiveness. Only a small subset of these genes intersected with candidate genes from the previous QTL study, and, of the main candidates tested with qPCR under nonpermissive conditions, only SHORT VEGETATIVE PHASE (SVP) gene expression met predictions for a population-specific short-day-repressor of flowering that is repressed by cold.