Published in

Wiley, Advanced Optical Materials, 5(1), p. 368-373, 2013

DOI: 10.1002/adom.201300002

Links

Tools

Export citation

Search in Google Scholar

Electrically Switchable Diffraction Grating Using a Hybrid Liquid Crystal and Carbon Nanotube-Based Nanophotonic Device

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A hybrid liquid crystal and carbon nanotube-based device which shows the capacity to perform as a switchable diffraction grating is demonstrated. A liquid crystal layer was sandwiched between two electrodes (patterned into gratings). The bottom electrode consists of a two dimensional square array of carbon nanotubes, while the top electrode comprises an ITO-based in-plane switching electrode on glass. The carbon nanotubes, due to their high aspect ratios, produce defects within the liquid crystal layer, producing a two dimensional grating. The device displays distinct voltage-dependent diffraction patterns due to the two different electrodes. The diffraction patterns are studied both computationally and experimentally, with good agreement between the results obtained. Both the diffraction pattern and efficiency from the device could be switched by varying the applied voltage across the liquid crystal layer.