Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Lecture Notes in Computer Science, p. 805-812

DOI: 10.1007/978-3-319-10470-6_100

Links

Tools

Export citation

Search in Google Scholar

Mapping Brains on Grids of Features for Schizophrenia Analysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper exploits the embedding provided by the counting grid model and proposes a framework for the classification and the analysis of brain MRI images. Each brain, encoded by a count of local features, is mapped into a window on a grid of feature distributions. Similar sample are mapped in close proximity on the grid and their commonalities in their feature distributions are reflected in the overlap of windows on the grid. Here we exploited these properties to design a novel kernel and a visualization strategy which we applied to the analysis of schizophrenic patients. Experiments report a clear improvement in classification accuracy as compared with similar methods. Moreover, our visualizations are able to highlight brain clusters and to obtain a visual interpretation of the features related to the disease.