Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep22770

Links

Tools

Export citation

Search in Google Scholar

Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractXyloglucan, a ubiquitous highly branched plant polysaccharide, was found to be rapidly degraded and metabolized by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Our study shows that at least four cellulosomal enzymes displaying either endo- or exoxyloglucanase activities, achieve the extracellular degradation of xyloglucan into 4-glucosyl backbone xyloglucan oligosaccharides. The released oligosaccharides (composed of up to 9 monosaccharides) are subsequently imported by a highly specific ATP-binding cassette transporter (ABC-transporter), the expression of the corresponding genes being strongly induced by xyloglucan. This polysaccharide also triggers the synthesis of cytoplasmic β-galactosidase, α-xylosidase, and β-glucosidase that act sequentially to convert the imported oligosaccharides into galactose, xylose, glucose and unexpectedly cellobiose. Thus R. cellulolyticum has developed an energy-saving strategy to metabolize this hemicellulosic polysaccharide that relies on the action of the extracellular cellulosomes, a highly specialized ABC-transporter, and cytoplasmic enzymes acting in a specific order. This strategy appears to be widespread among cellulosome-producing mesophilic bacteria which display highly similar gene clusters encoding the cytosolic enzymes and the ABC-transporter.