Published in

MDPI, Molecules, 3(21), p. 311, 2016

DOI: 10.3390/molecules21030311

Links

Tools

Export citation

Search in Google Scholar

bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C5H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 10 4 mol/L, pot-life 60 min, curing 6 h). Although cis-[PtCl2(NCCH2Ph)2] is less active than the widely used Karstedt’s catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 10 4 mol/L), but also, more efficiently, at 80 C (c = 1.0 10 4–1.0 10 5 mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking. ; This project was supported by Federal Target Program (grant 14.576.21.0028). Andrey V. Vlasov and Vadim Yu. Kukushkin are much obliged to Saint Petersburg State University for a postdoctoral fellowship (12.50.1188.2014) and research grant (12.38.225.2014), correspondingly. The authors also express their gratitude to the Center of Thermal Analysis and Calorimetry (Saint Petersburg State University) for physicochemical measurements.