Dissemin is shutting down on January 1st, 2025

Published in

al-Farabi Kazakh National University, Chemical Bulletin of Kazakh National University, 4

DOI: 10.15328/cb672

Links

Tools

Export citation

Search in Google Scholar

Quantification of phenol in soil using solid-phase microextraction, gas chromatography-mass spectrometry and standard addition

Journal article published in 2015 by Saltanat Yegemova, Miras Derbissalin, Bulat Kenessov ORCID, Jacek Koziel ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Phenol is a toxic environmental pollutant possessing carcinogenic and mutagenic properties. Determination of phenol in soil by certified methods requires long and laborious sample preparation. Solid-phase microextraction (SPME) allows much simpler and faster determination of pollutants in soils. However, method accuracy is limited by the problem of effective matrix effect control. The aim of this study was to develop a rapid and inexpensive method for the quantitative determination of phenol in soil using SPME, gas chromatography-mass spectrometry and standard addition. Extraction temperature 80°C provides the lowest relative standard deviation being 2.1 and 4.6% for aqueous and soil samples, respectively. Soil equilibration time after addition of phenol standard at 80°C should take at least 6 h. The developed method was successfully tested on model and real soil samples having phenol concentrations 0.44 and 0.059 mg/kg, respectively. Coefficients of linear approximation of calibration dependences were higher than 0.97. Method detection limit depends on the affinity of matrix to analyte and is lower than 10 µg/kg.