Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep22274

Links

Tools

Export citation

Search in Google Scholar

Identification of candidate diagnostic biomarkers for adolescent idiopathic scoliosis using UPLC/QTOF-MS analysis: a first report of lipid metabolism profiles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAdolescent idiopathic scoliosis (AIS) is a complex spine deformity, affecting approximately 1–3% adolescents. Earlier diagnosis could increase the likelihood of successful conservative treatment and hence reduce the need for surgical intervention. We conducted a serum metabonomic study to explore the potential biomarkers of AIS for early diagnosis. Serum metabolic profiles were firstly explored between 30 AIS patients and 31 healthy controls by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Then, the candidate metabolites were validated in an independent cohort including 31 AIS patients and 44 controls. The results showed that metabolic profiles of AIS patients generally deviated from healthy controls in both the discovery set and replication set. Seven differential metabolites were identified as candidate diagnostic biomarkers, including PC(20:4), 2-hexenoylcarnitine, beta-D-glucopyranuronicacid, DG(38:9), MG(20:3), LysoPC(18:2) and LysoPC(16:0). These candidate metabolites indicated disrupted lipid metabolism in AIS, including glycerophospholipid, glycerolipid and fatty acid metabolism. Elevated expressions of adipose triglyceride lipase and hormone sensitive lipase in adipose tissue further corroborated our findings of increased lipid metabolism in AIS. Our findings suggest that differential metabolites discovered in AIS could be used as potential diagnostic biomarkers and that lipid metabolism plays a role in the pathogenesis of AIS.