Full text: Download
In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA) in the context of hyperspectral image classification via a geodesic Gaussian flow kernel based support vector machine (GFKSVM). To show the superior performance of the proposed approach, conventional support vector machines (SVMs) and state-of-the-art DA algorithms, including information-theoretical learning of discriminative cluster for domain adaptation (ITLDC), joint distribution adaptation (JDA), and joint transfer matching (JTM), are also considered. Additionally, unsupervised linear and nonlinear subspace feature transfer techniques including principal component analysis (PCA), randomized nonlinear principal component analysis (rPCA), factor analysis (FA) and non-negative matrix factorization (NNMF) are investigated and compared. Experiments on two real hyperspectral images show the cross-image classification performances of the GFKSVM, confirming its effectiveness and suitability when applied to hyperspectral images. ; Department of Land Surveying and Geo-Informatics