Published in

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

DOI: 10.1109/iros.2015.7353376

Links

Tools

Export citation

Search in Google Scholar

Force feedback enhancement for soft tissue interaction tasks in cooperative robotic surgery

Journal article published in 2015 by Elisa Beretta, Elena De Momi, Giancarlo Ferrigno ORCID, Federico Nessi
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

-Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as during brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be suitable solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with non-linear force feedback (FFE) is presented to provide augmented haptic perception to the operator, during the instrument's placement on the tissue. The FFE controller was experimentally validated with a pool of non-expert users using brain-mimicking gelatin phantoms (8%-16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proved to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue motions as during seizures due to cortex stimulation.