Published in

Wiley, Proteins: Structure, Function, and Bioinformatics, 4(61), p. 732-740, 2005

DOI: 10.1002/prot.20698

Links

Tools

Export citation

Search in Google Scholar

Dependency between consecutive local conformations helps assemble protein structures from secondary structures using Go potential and greedy algorithm

Journal article published in 2005 by Pierre Tuffery ORCID, Philippe Derreumaux
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Discretization of protein conformational space and fragment assembly methods simplify the search of native structures. These methods, mostly of Monte Carlo and genetic-type, do not exploit, however, the fact that short fragments describing consecutive parts of proteins are conformation-dependent. Yet, this information should be useful in improving ab initio and comparative protein structure modeling. In a preliminary study, we have assessed the possibility of using greedy algorithms for protein structure reconstruction based on the assembly of fragments of four-residue length. Greedy algorithms differ from Monte Carlo and genetic approaches in that they grow a polypeptide chain one fragment after another. Here, we move one step further in complexity, and provide strong evidence that the dependence between consecutive local conformations during assembly makes possible the reconstruction of protein structures from their secondary structures using a Go potential. Overall our procedure can reproduce 20 protein structures of 50-164 amino acids within 2.7 to 6.5 A RMSd and is able to identify native topologies for all proteins, although some targets are stabilized by very long-range interactions.