Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms10655

Links

Tools

Export citation

Search in Google Scholar

Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe selective targeting of mismatched DNA overexpressed in cancer cells is an appealing strategy in designing cancer diagnosis and therapy protocols. Few luminescent probes that specifically detect intracellular mismatched DNA have been reported. Here we used Pt(II) complexes with luminescence sensitive to subtle changes in the local environment and report several Pt(II) complexes that selectively bind to and identify DNA mismatches. We evaluated the complexes’ DNA-binding characteristics by ultraviolet/visible absorption titration, isothermal titration calorimetry, nuclear magnetic resonance and quantum mechanics/molecular mechanics calculations. These Pt(II) complexes show up to 15-fold higher emission intensities upon binding to mismatched DNA over matched DNA and can be utilized for both detecting DNA abasic sites and identifying cancer cells and human tissue samples with different levels of mismatch repair. Our work highlights the potential of luminescent Pt(II) complexes to differentiate between normal cells and cancer cells which generally possess more aberrant DNA structures.