IOP Publishing, Physica Scripta, (T167), p. 014007
DOI: 10.1088/0031-8949/t167/1/014007
Full text: Unavailable
Stress-relieved pure tungsten received three damage levels (0.10, 0.25 and 0.50 dpa) by self-tungsten ion beam irradiation at room temperature. Positron annihilation spectroscopy showed the formation of mono-vacancies and vacancy clusters after ion beam exposure. In the first irradiation step (0–0.10 dpa) some splitting up of large vacancy clusters occurred which became more numerous. For increasing dose to 0.25 dpa, growth of the vacancy clusters was seen. At 0.50 dpa a change in the defect formation seems to occur leading to a saturation in the lifetime signal obtained from the positrons. Nano-indentation on the cross-sections showed a flat damage depth distribution profile. The nano-indentation hardness increased for increasing damage dose without any saturation up to 0.50 dpa. This means that other defects such as dislocation loops and large sized voids seem to contribute.