Published in

American Speech-Language-Hearing Association, Journal of Speech, Language, and Hearing Research, 5(49), p. 1127-1146, 2006

DOI: 10.1044/1092-4388(2006/081)

Links

Tools

Export citation

Search in Google Scholar

Alterations in CNS Activity Induced by Botulinum Toxin Treatment in Spasmodic Dysphonia: An H 2 15 O PET Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Speech-related changes in regional cerebral blood flow (rCBF) were measured using H 2 15 O positron-emission tomography in 9 adults with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (BTX) injection and 10 age- and gender-matched volunteers without neurological disorders. Scans were acquired at rest and during production of continuous narrative speech and whispered speech. Speech was recorded during scan acquisition for offline quantification of voice breaks, pitch breaks, and percentage aperiodicity to assess correlations between treatment-related changes in rCBF and clinical improvement. Results demonstrated that speech-related responses in heteromodal sensory areas were significantly reduced in persons with ADSD, compared with volunteers, before the administration of BTX. Three to 4 weeks after BTX injection, speech-related responses were significantly augmented in these regions and in left hemisphere motor areas commonly associated with oral-laryngeal motor control. This pattern of responses was most strongly correlated with the objective measures of clinical improvement (decreases in the frequency of voice breaks, pitch breaks, and percentage aperiodicity). These data suggest a pathophysiological model for ADSD in which BTX treatment results in more efficient cortical processing of sensory information, making this information available to motor areas that use it to more effectively regulate laryngeal movements.