Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nanotechnology, 24(25), p. 245707

DOI: 10.1088/0957-4484/25/24/245707

Links

Tools

Export citation

Search in Google Scholar

Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The magnetic properties of arrays of nanowires (NWs) and nanotubes (NTs), 150 nm in diameter, electrodeposited inside nanoporous polycarbonate membranes are investigated. The comparison of the nanoscopic magnetic force microscopy (MFM) imaging and the macroscopic behavior as measured by alternating gradient force magnetometry (AGFM) is made. It is shown that MFM is a complementary technique that provides an understanding of the magnetization reversal characteristics at the microscopic scale of individual nanostructures. The local hysteresis loops have been extracted by MFM measurements. The influence of the shape of such elongated nanostructures on the dipolar coupling and consequently on the squareness of the hysteresis curves is demonstrated. It is shown that the nanowires exhibit stronger magnetic interactions than nanotubes. The non-uniformity of the magnetization states is also revealed by combining the MFM and AGFM measurements. ; Comment: 7 pages, 5 figures