Published in

American Society of Mechanical Engineers, Journal of Solar Energy Engineering

DOI: 10.1115/1.4032943

Links

Tools

Export citation

Search in Google Scholar

Secondary concentrators to achieve high flux radiation with metal halide solar simulators

Journal article published in 2016 by Xue Dong, Graham J. Nathan ORCID, Zhiwei Sun, Peter J. Ashman, Dahe Gu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents assessments of the sensitivity of the performance of high flux solar simulators to the key variables of conical secondary concentrators for metal halide lamps, which offer complementary benefits compared with xenon arc lamps. The assessment is performed for both a single-lamp configuration and a seven-lamp array, each lamp close-coupled with its own elliptical reflector, and then aligned with a common conical secondary concentrator. The simulation of heat flux from both the single- and the seven-lamp systems was performed with the Monte Carlo ray-tracing code, which was validated with the experimental results from the single-lamp system. The calculated heat flux at the focal plane agrees with the measured peak flux to within 5% and to within 13% of the measured half width. Calculated results also show that the addition of the secondary concentrator to the single-lamp system can increase the peak flux by 294% and the average flux by up to 93% within a target of 100mm in diameter, with a corresponding reduction in total power by 15%. The conical secondary concentrator is less effective for a seven-lamp system, increasing the peak and average fluxes by 87.3% and 100%, respectively, within 100mm diameter focal plane, with a corresponding reduction in total power by 48%. The model was then used to assess the sensitivity of the geometry of the secondary concentrators for both the single- and seven-lamp systems. The results show that the average heat flux is sensitive to the surface reflectance of the secondary concentrator, with the average flux decreasing almost linearly with the surface reflectance. The presence of the secondary cone greatly reduces the sensitivity of the concentrated heat flux to misalignment of the tilting angle of the elliptical reflector relative to the arc. ; Xue Dong, Graham J. Nathan, Zhiwei Sun, Peter J. Ashman