Dissemin is shutting down on January 1st, 2025

Published in

CSIRO Publishing, Crop and Pasture Science, 12(66), p. 1249

DOI: 10.1071/cp15108

Links

Tools

Export citation

Search in Google Scholar

Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plants dynamically cope with the variability of mineral nutrient distribution in soil by constantly modulating nutrient uptake and shaping root-system architecture. The changes in root morphology in response to major essential elements are largely documented, but little is known about how the root system responds to magnesium (Mg) availability. Thirty-six natural accessions of the model species Arabidopsis thaliana were subjected to an in vitro screen for identifying variation in root system architecture in response to Mg availability. Response of root morphology was observed on 2-dimensional agar plates. Low Mg supply repressed the elongation of the lateral roots more than of the primary root. However, some accessions exhibited higher number and length of lateral roots than the reference Columbia-0. Across all accessions, the root morphological traits did not correlate with tissue Mg concentrations. Interestingly, shoot calcium and root phosphorus concentrations were positively correlated with the number and length of lateral roots, whereas root iron concentration was negatively correlated with the primary root length. The diversity of root phenotypes identified in this report is a useful resource to study the genetic component determining root morphology in response to Mg availability.