Published in

Oxford University Press, International Journal of Neuropsychopharmacology, 02(12), p. 275, 2008

DOI: 10.1017/s1461145708009620

Links

Tools

Export citation

Search in Google Scholar

Acute ethanol challenge inhibits glycogen synthase kinase-3β in the rat prefrontal cortex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Intracellular signalling pathways emerge as key mediators of the molecular and behavioural effects of addictive drugs including ethanol. Previously, we demonstrated that the innate high ethanol preference in AA rats is driven by dysfunctional endocannabinoid signalling in the medial prefrontal cortex (mPFC). Here, we report that acute ethanol challenge, at a dose commonly regarded as reinforcing, strongly phosphorylates glycogen synthase kinase-3beta (GSK-3beta) in this region with corresponding increased phosphorylation of AKT, a major regulator of GSK-3beta. In the non-preferring counterpart ANA line we found a weaker, AKT-independent phosphorylation of GSK-3beta by ethanol. Furthermore, AA rats showed rapid and transient dephosphorylation of ERK1/2 upon acute ethanol challenge in the medial prefrontal cortex (mPFC) and to a lesser degree in the nucleus accumbens; ANA rats were completely non-responsive for this mechanism. Together, these results identify candidate pathways for mediating high ethanol preference and emphasize the importance of the mPFC in controlling this behaviour.