Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms10716

Links

Tools

Export citation

Search in Google Scholar

A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHelitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct Helraiser, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of Helitron transposition. A hairpin close to the 3′-end of the transposon functions as a transposition terminator. However, the 3′-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. Helraiser transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by Helitron promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into Helitron transposition, and its impact on diversification of gene function by genome shuffling.