Published in

MDPI, Entropy, 2(18), p. 61, 2016

DOI: 10.3390/e18020061

Links

Tools

Export citation

Search in Google Scholar

Nonparametric Problem-Space Clustering: Learning Efficient Codes for Cognitive Control Tasks

Journal article published in 2016 by Domenico Maisto, Francesco Donnarumma ORCID, Giovanni Pezzulo ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present an information-theoretic method permitting one to find structure in a problem space (here, in a spatial navigation domain) and cluster it in ways that are convenient to solve different classes of control problems, which include planning a path to a goal from a known or an unknown location, achieving multiple goals and exploring a novel environment. Our generative nonparametric approach, called the generative embedded Chinese restaurant process (geCRP), extends the family of Chinese restaurant process (CRP) models by introducing a parameterizable notion of distance (or kernel) between the states to be clustered together. By using different kernels, such as the the conditional probability or joint probability of two states, the same geCRP method clusters the environment in ways that are more sensitive to different control-related information, such as goal, sub-goal and path information. We perform a series of simulations in three scenarios—an open space, a grid world with four rooms and a maze having the same structure as the Hanoi Tower—in order to illustrate the characteristics of the different clusters (obtained using different kernels) and their relative benefits for solving planning and control problems.