Published in

Wiley, Journal of Anatomy, 3(223), p. 228-241, 2013

DOI: 10.1111/joa.12075

Links

Tools

Export citation

Search in Google Scholar

Postnatal changes in the growth dynamics of the human face revealed from bone modelling patterns

Journal article published in 2013 by Cayetana Martinez-Maza, Antonio Rosas, Manuel Nieto-Díaz ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human skull morphology results from complex processes that involve the coordinated growth and interaction of its skeletal components to keep a functional and structural balance. Previous histological works have studied the growth of different craniofacial regions and their relationship to functional spaces in humans up to 14 years old. Nevertheless, how the growth dynamics of the facial skeleton and the mandible are related and how this relationship changes through the late ontogeny remain poorly understood. To approach these two questions, we have compared the bone modelling activities of the craniofacial skeleton from a sample of subadult and adult humans. In this study, we have established for the first time the bone modelling pattern of the face and the mandible from adult humans. Our analyses reveal a patchy distribution of the bone modelling fields (overemphasized by the presence of surface islands with no histological information) reflecting the complex growth dynamics associated to the individual morphology. Subadult and adult specimens show important differences in the bone modelling patterns of the anterior region of the facial skeleton and the posterior region of the mandible. These differences indicate developmental changes in the growth directions of the whole craniofacial complex, from a predominantly downward growth in subadults that turns to a forward growth observed in the adult craniofacial skeleton. We hypothesize that these ontogenetic changes would respond to the physiological and physical requirements to enlarge the oral and nasal cavities once maturation of the brain and the closure of the cranial sutures have taken place during craniofacial development. ; This research is founded by the Spanish Ministry of Economy and Competitiveness (Projects CGL2009-09013 and CGL2012-36682) ; Peer reviewed