Published in

Elsevier, Bioresource Technology, (209), p. 205-212, 2016

DOI: 10.1016/j.biortech.2016.02.122

Links

Tools

Export citation

Search in Google Scholar

Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2 g NaCl L-1 per week up to 10 g NaCl L-1. The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10 g NaCl L-1 due to lower nitrifier activity). Irreversible cake deposition was the predominant fouling mechanism observed during the experiment. Respirometric tests exhibited a stress effect due to salinity, with a reduction in the respiration rates observed (from 8.85 mgO2 L-1 h-1 to 4 mgO2 L-1 h-1).